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Abstract

This thesis addresses the problem of estimating the
target angle with respect to the boresite of an Amplitude-
Comparison Monopulse Radar. The maximum likelihood esti-
mate is used to track the target and produce a mean-sgquare
error. This error is approximated from a computer simu-
lated tracking loop and then compared to the Cramer-Rao
and Ziv-Zakai bounds.

At high signal-to-noise ratios (SNR), the Cramer-

Rao bound is useful in lower bounding the mean-square error.

At low SNR levels a phenomena known as the threshold effect
occurs and the Cramer-Rao bound becomes unreliable as a
lower bound. The 2Ziv-Zakai bound is a tighter bound and
can be used to lower bound the mean-square errcr at very
low SNR levels. It also proves useful in determining the

SNR lavel at which the threshold effect occurs.

\
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LOWER BOUNDS ~PPLIED TO THE MEAN-SQUARE TRACKING
ERROR OF AN AMPLITUDE-COMPARISON

MONOPULSE RADAR

I. Introduction

Background

A moﬁopulse radar tracits by maintaining the radar
boresite on the target. As the target moves off of bore-
site an error voltage is developed proportional to the
angle off boresite. This information is fed to the radnr
angle servo which in turn steers the boresite toward the
target. Theoretically, this process is done using infor-
mation gained from a single pulse. Breaklock occurs at a
certain signal-to-noise ratio (SNR) per pulse when the
information gained from the pulse is not sufficient to
steer the boresite to the target accurately. Consequently,
the target moves out of the anteana beam width.

At a certain minimum SNR level, a phenomena known
as the threshold effect occurs. Consider the example of a
probability density function (pdf) of an observation z.

Assume that the density function has several maximums, the

largest of which is at the center. The maximum likelihood

(ML) estimate of z is that value of z which maximizes the

pdf [(Ref 6].
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For the case of no noise in the observation z,
the maximum is at the origin (Figure l). For the low noise
situation, the maximum is shiftec a small distance from the
origin which is prcportional to the standard deviation
of the additive noise. When the ncise becomes comparable
to the mean of the pdf, not only is the local maximum near
the origin shifted but it is highly probable that some

other local maximum of the pdf becomes the largest. Now

caaniie b i ollens alen cindd aas - e e i

the error is much larger than the error caused by the shift-
ing of the central local maximum. These large errors are
referred to as anomalous errors. When anomalous errors

4 occur, the system behaves nonlinearly and its performance
degrqdes rapidly. This is what is known as the threshold

effect [Ref 11].

P(2)

>
Z

Fig. 1. Probability Density Function of Observation z

The incoming target return is processed in the
monopulse radar by weighting the amplitude of the return by

the antenna gain factor of its sum and difference beams.

2




This amplitude weighting is proportional to the target
angle off of boresite and is used to steer the radar bore-
; site to the target. Because of random channel noise how-
ever, the boresite will be steered to the vicinity of the
actual target position. The vicinity is described in terms
of the mean-square error (MSE). It will be shown hereafter E
that as the SNR level decreases, the MSE increases.

The threshold can be quantified by describing a
mean-square tracking error, driving its lower bournd and f
then comparing the two. It can be shown [Ref 2] that the
Cramer-Rao (CR) bound for the variance of the probability ;

density of the angle off boresite estimate is proportional

1 to the beam-width and SNR. j
i

Var(é) -4 -S%qﬁ (l)

This bound tells us that no matter what SNR, the ?
variance is kept small by maintaining a narrow beam-width. 2
However, the CR bound is only useful when the SNR level
is well above the system threshold. Below threshold the
CR bound becomes inaccurate and proves unable to predict
breaklock. A much tighter bound (one good at low SNR) is I
needed to guantify and predict the system threshold or

breaklock point. j
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Problem and Scope

The purpose of this thesis is to develop a maximum
likelihood estimate of the target angle off boresite and 1
use it to track the target. From this procedure the MSE »
can be derived through simulation and used to determine i
at what SNR the MSE becomes large enough to be considered
a breaklock point. The simulation results will then be
compared to the CR and Ziv-Zakai bounds to see which bound 13
will provide an accurate prediction of the breaklock point.

The Ziv-2Zakai (2Z) bound is designed to be tighter i
at low SNR levels [Ref 11]. The bound was derived by con-
sidering the suboptimal detection procedure which involves

an estimate cf one of two possible values of a parameter.

A criteria was developed for determining which value of
the parameter was estimated. This approach is called the 1
Estimation Theorist's Approach. The probability of error
associated with this approach is lower bounded by the proba-
bility of error achieved by the optimal detection scheme
(which is referred to as the Hypothesis Tester's Approach).
This entire process resulted in new bounds based on known

?. results in detection theory. The advantage of the ZZ bound F

: is that it is independent of biases associated with esti-

mators and is therefore tighter than other bounds [Ref 11].
The Z2Z bound was modified to fit a problem involv-

ing the bearing estimate of a linear array [Ref 8]. This E
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modified version is adapted and used to derive a lower

bound for the MSE for this problem.

Assumptions

This problem is approached assuming a one-
dimensional Amplitude-Comparison Monopulse Radar (i.e.,
azimuth case only). The channel noise is assumed to be
white gaussian noise (WGN) independent from channel to
channel and pulse to pulse with zero mean and variance
No/2. The antenna functions used to describe the sum and
difference beams are derived assuming ihe two radar
antennas are point sources in a linear array. The ampli-
tude of the return signal, A, is assumed to be random and
unknown since the target radar cross-section is unknown.
However, A can be estimated as will be shown and used in
the estimation of the target angle relati&e to boresite.

The radar's 3 "3 beam~-width is 3° and the PRF is
200 pps.

2. stationary target will be tracked first after

which a moving target will be considered.

General Approach

The first step is to develop adequate antenna func-

tions which can weight the return signal amplitude propor-
tional to the target angle relative to boresite. The
antenna functions are used to form the observation r(t).

The product of the return signal s(t), its amplitude A,

5
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and the antenna functici, added to the channel nocise makes

up an observation.
r(t) = As(t)g(f) + n(t)

It is shown that the one-dimensional monopulse
radar has two channels and will therefore have two observa-
tions rl(t) and rz(t). With these observations and their
joint pdf, the maximum likelihood estimate can be derived

by finding

S8 pr r,/n,0) =0 (2)

where p(rlrz/A,e) is the joint pdf of ry and Yo A is the
amplitude of the return signal and @ is the target angle
relative to boresite.

This results in an equation that is a function of
®, the actual target position relative to boresite, and 6,
the estimated target position. It is then shown that this
eguation is zero when 6 = 8, or when the radar boresite
is pointing at the actual target position. This equation
is called the error equation and is used to steer the
antenna toward the target.

Once the error equation is obtained, the %2 bound
is derived following the steps outlined in reference [8].

At this point, a computer simulated tracking loop
is designed and implemented. The tracking loop will yield

an error between the actual target position and the

6
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boresite position. This error is developed into an MSE
and then plotted for different SNR levels. The MSE will
be a functicn of time since an error will develop for each
pulse or observation received. The breaklock point will
occur when the MSE grows unbounded as the number of pulses
(or observations) increases. The level of SNR where this
occurs is compared to the Cramer-Rao and Ziv-Zakai bounds
to quantify the system threshold or breaklock point.

Beth' the stationary and nonstationary targets are

used to determine breaklock.
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II. The Radar Model

The Antenna Functions

A simple block diagram of a one-dimensional mono-

pulse radar is shown in Figure 2.

1

DA+ —>

A

0

A S~

: D{a-8 [—>

Fig. 2. Simple Block Diagram of Radar

The patterns of antennas A and B are combined so
as to produce two beams. The sum beam, A+B, is represented
as an antenna function gz(e). Likewise, the difference
beam, A-B, is represented as gA(e). The antenna functions
are used to describe the amplitude weighting of the target
return. The maximum gain occurs at the antenna boresite
(6=0) and decreases as 6 increases.

To derive the antenna functions, the two antennas
are considered as point sources in a two-element linear

array (see Figure 3).
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Fig. 3. Two Point Sources in the x-z Plane

A plane wave approaching from an arbitrary direc-

e i e Y

|
l
tion in the x-z plane can be described as 1
. jiEA';: }
: EA = BE_e (2) i
A
jEB-E (3) 1
EB = Eoe
1 L
4 where Eo is the ampliﬁude of the plane wave and 1
KA = koxox |
Kg = kX x ,
and %
It
r = x sin 8 cos ¢ + 9 sin ¢ sin ¢ + z cos 8 |
Performing the dot product and substituting back into :
equationes (2) and (3) gives
3
jk x_ sin 8
- oo
9 {




-jk x_ sin 6
Ep = E_e oo (5)

Equations (4) and (£) can now be used to form the sum
and difference beams of the monopulse radar.
jknxo sin © -jkoxo sin 6
Ey + Eg = E (e + e ) (6)

Jkoxo sin 6 -Jkoxo sin ¢

"E, - E_ =E (e - e ) (7).

A B o]

Using Euler's equation and taking the magnitude yields

[Ref 8]

]

|E, + E 2E_ cos u (8)

g

|Ep - E 2E_ sin u (%)

B!

vhere u = ]-r.ox0 sin 6.
The antenna functions for the radar model can be

obtained by normalizing equations (8) and (9) to produce

cos u (10)

gz(u)

sin u (11)

gA(u)

These functions represent the monopulse sum and
difference beams. The patterns from the two antennas are
approximated in Figure 4. To obtain the sum beam these
two pattzrns are summed and yield the pattern shown in
Figure 5a. The difference beam is obtained by subtracting
the two patterns which yields the pattern in Figure 5b.

10
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7 Fig. 4. The Antenna Patterns of the Two Ideal f
Antennas of the Monopulse Radar
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a ;
Fig. 5. The Two Monopulse Beams _ ﬁ
(a) The Sum Beam; (b) the Difference Beam !
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+f the boresite is pointing directly at the target

1l
—

gz(u) cos (sin(0))

and

I
o

gA(u) = sin (sin(0))

Now that the antenna functions have been estab-
lished, a model for estimating the angle off boresite can
be developed.

The block diagram in Figure 6 shows the basic
system. The signal s(t) with unknown amplitude A is
weighted by the antenna functions gz(u) and gA(u)' The
channel noise n(t) is added to each channel output to
produce the observations rl(t) and rz(t). These observa-
tions enter the estimator which produces an output (an
estimate of the target position relative to boresite) that
is used as input to the angle servo. The angle servo

then moves the radar boresite.

The Estimator

A maximum likelihood estimate will be taken with
respect to the observations rl(t) and r2(t). To do this
a joint probability density function of rl(t) and rz(t)

is needed.

12
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Aﬁ k g'}:(u) Estimator
2
| ideal
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af
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Fig. 6. Block Diagram of the Radar Model Showing
the Addition of the Estimator and Servo

The observations rl(t) and r2(t) are

rl(t) Agy (u)s(t) + n(t) (12)

r,(t) = Ag,(u)s(t) + nit) (13)

where n(t) is additive white gaussian channel noise and A

is the unknown amplitude of the target return.

For convenience, let gx(u) = gl(u) and gA(u) =
g,(u). |

The maximum likelihood estimator is formed by
operating on the density function of the observations.
Since the observation, r(t) = As(p)g(u)+n(t), falls under
the category of an uncountable infinite number of points,

it needs to be transformed into a set of countable

13
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infinite vectors to form the probability density function.

The set of vectors is fourmed by decomposing the observa-

,tions rl(t) and rz(t) into a basis set formed by applying

the Gram~Schmidt orthogonalization method [Ref 10}. For
the single pulse problem the orthonormal basis set is

one-dimensional with

s(t) /VE 0<t<T
¢i(t) =
0 else
then
T
ry, =f rl(t)¢l(t)dt
0
T
=f r;(t)s(t)/VE at
0
T —_
=J' [As(t)g, (uj + nl(t)]s(t)/fE dt
0
where
rT
n, = 1//Ejo s(t)nl(t) dt
Similarly,
T
ray i/. rz(t)¢l(t) dt
= 0
and then
r,, = A/ﬁgz(u) +n, : (15)

14
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Since the noise components, n,, are independent gaussian

random variables, r and r are gaussian and independent.

11 21
Their statistics are

il

E{r,,/A,u} = A/ﬁgl(u); var(r,;/A,u) = N_ /2 (16)

i

E{IZI/A,u} = A/ﬁgz(u); var (r,,/A,u) N_/2 (1%)

At this point only a single pulse is being con-
sidered so the second subscript on the vector observations
will be dropped.

The pdf of the observations is the joint pdf of

ry and L. Since they are independent, the joint pdf is

plryr,/A,u) = p(r;/A,u)p(r,/A,u)

k

2

1
p(rlrz/A,u) (ﬁﬁ;)

exp {g-i[(rl-A/'E‘gl(unz + (r,~AvEg, () %]}
(18)

To obtain the maximum likelihood estimate [Ref 6]

we find

i
o

3/9A[4n p(rlrz/A,u)]

and

I
[

3/d%ulin p(rlrzlA,u)]

15
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N Let 3/3ug(u) = é(u)
&n p(rlrz/A,u) = ¢nk - l/No[(rl-lsnfﬁgl(u))2

+ (,-A/Eg, (u))?]

where k is a constant.

Then

B/BA[znp(rlrz/A,u)]= ﬁl[Z(rl~ﬁ/§gl(u))(-gl(u)/ﬁ)
o

+ 2(x,~AVEg, (u)) (-g,(w)VE)] = 0

Solving for A we get

rlgl(u) + r2g2(u)

; h o /Bl () + 9.2 (w) (19) |
Now to find u ?
3/3ulfnp(r,r,/a,u)] = ﬁi[Z(rl-A/ﬁgl(u)) §

] (-A/Eél(u»+2(r2-A/§gz(u))(-A/Eéz(u))] =0 |

Solving for A/E yields

AVE - rlgl(u) + rzgz(u) . )
L] ] ’
gl(u)gl(u) + gz(u)gz(u) ‘

Substituting equation (19) for AVE yields

rlgl(u) + rzgz(u) _ rlgl(u) + rzgz(u) %
qf(u) + g;(u) gl(u)élhn + gz(u)ézhn i
16
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continuing we get

[rlgl(u)+r2g2(uﬂ[g1(u)él(u)+g2(u)gz(u)]

= [ry9; (W) 41,9, (w) ] (g (W) +g7 (u)]

r,9,5 (g, () + r g (Wg, (g, + r,g (alg,(ug, ()
+ r,9.2(u)g, (u)
2°2 2
= r.g.2(u) g, (u) + £.9.2 (g, (u) + r,9.2(u)g, (u) i
19; ‘W9 192 W19y 291 W9,

+ rzgzz(u)gz(u)

r,9,() [g; (W) g, () ~g, (a)g, ()]

e s AL skl

+ r,g,{u) g, (u) gz(u)-gl(u)éz(u)i =0

% which for G = u results in !
: rig,) - ryg,(u) =0 (20) i

Equation (20) is the general error equation for a
one~dimensional Amplitude-Comparison Monopulse Radar. This
equation will be used to steer the radar boresite to the ?f

target. To see this, recall that gl(u) = c¢os u and

gz(u) = sin u. Substituting these into equation (20)
gives
ry sinu - r, cosu =¢ : (21) i
17 i
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The expected value of equation (21) is

~ A~

E{rl sin u - r, cos u}

A ~

AYE[z0os u sin u - sin u cos u

1]

€ = AYE sin(u - u)

(22)

This represents the error equation for a no noise case.

Clearly, if u = u the error is zero. This means that the

radar boresite is pointing directly at the target.

When

the WGN is considered, however, the error is never zero

and the error equation is random.

A ~

g€ =r, sinu - r., cos u
1 2

The Discriminator Curve

(23)

If equation (22) is normalized with respect to

the return signal amplitude and energy it becomes

€ = sin (Au)

A

(24)

where Au = u - u. This equation, which is the mean of

equation (23), describes a discriminator curve,

criminator curve can be used to obtain a value for Au

The dis-

which is a function of the target angle 6 (see Figure 7).

For each value of ¢ on the discriminator curve

there is a unique corresponding value for Au as long as the

linear portion of the curve is used.

18
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Aumax

-AUmax au

Fig. 7. Discriminator Curve

Equation (23) is also a discriminator curve. How-
ever, since rl.and r, are random variables, a different
curve is produced for each value of r, and r,. This pre-
vents the use of equation (23) to design a discriminator.
Equation (24), being the average or mean of (23), is more
practical for a discriminator design since it is unchanging
with each observation. Both equations (23) and (24) are
used to produce a Au to steer the radar boresite. Equa-
tion (23) produces the error value & which contains the
target position information plu~ a noise component. Equa-
tion (24), or the discriminator curve in Figure 7, uses
the value of ¢ from equation (23) to produce a Au that

does not include the noise component. When Au is sent to

the angle servo to move the boresite, a tracking error

develops.

19
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This can best be seen by an example. Leat the

target position relative to boresite be 1.0°. 1Ideally,

the error, €, would produce a 4u on the first return pulse

that corresponds to 1.0°. However, due to the additive

WGN, let Au from Figure 7 correspond to 0.9°. This value

is sent to the angle servo to move the radar boresite and
the resulting new target position relative to boresite

is 0.1°. This is also the tracking error. On the next

pulse an error is produced tha. corresponds to a target

angle of 0.1° plus a noise component. Each time (i.e.,
observation), the boresite is moved closer to the target
until a steady-state error is developed. As will be shown
later, the steady-state error can be formed into an MSE.
To quantify the threshold of the radar system the
MSE needs to be lower bounded. The lower bounds will
reveal the minimum the MSE can be for the system and also
help determine the SNR level at which breaklock or the
threshold effect occurs. The two bounds to be considered

are the Cramer-Rao and Ziv Zakai bounds {Refs 6; 12]}.

The Ziv-Zakai (Z22) Bound

The 22 bound as developed in references [8; 12]

is stated as follows:

2 (0) > max sin 6 p_(-8,0) (25)
0<6<8 e
- P
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where 0 is the target angle relative to boresite and ep

is defined by

sin © + sin 9
. = max
sin ep >

¥ The probability of error, pe(-e,e) is determined from

éi detection theory and denotes the error probability of the

{ best procedure for deciding whether a target is at -6 or

; ® when it is known that a target is at one of these posi-
tions and each has equal possibilities [Refs 6; 8].

! The probability of error can be described as

L

Ple) = P{HQ}P{£>0/H0} + P{Hl}P{2<0/Hl} (26)

where Hy and H, are two observation hypotheses and g is
the log-likelihood ratio as defined in reference [6].
For the minimum probability of error case, P{HO} = P{Hl}
L and therefore the detection threshold = 1 [Ref 6].

To begin with, the two hypotheses are

= A/Egl(uo)+nl;.r2 AVEg,(u_) + n, (27)

7
2]

i

H,: r A/Eg) (u)+n,; ., = A/Egz(ul) + n, (28)

1* 01

Recall that u = kox sin 6. The probability densities are
plr,x, /H )= (=) exp{:l[(r - A/Eg, (u_))?
172" 7o HNO N, 1l 170

+'(r2-A/Eg2(uo))21} (29)

21




p(r,r,/H;) = (—-—) exp{ o[(r A/Egl(u )2

+ (r,-AvEg,(u;)) %)) (30)

The likelihood ratio is formed from the ratio

of (30) to (29)

exp{Tt [(r A/Egl(ul))z + (rz-A/ﬁgz(ul))Z]} Hy

2(r) = _° ~ 3 — > 2 1
exp(§~[(rl-A/Egl(uo)) + (rz—A/Egz(uo)) 1} H

(o} 2

The log-likelihood ratio is
Lng(r) = rl[gl(ul)—gl(uo)] + rzlgz(ul)-gz(uo)]

A'/E[gl () -9, (o )+g2 (u, ) -9, %(u )¢ 0

s

(31)
The log-likelihood ratio, denoted %2, has statistics as

follows:

il

B(2/H_} = ME(g, (u))g; (u /=g, 2w )+g,(u Vg, () =g, (u )]

AJ‘[gl (u ) -9; (u )+92 (u )—gz (u )]

= A/E[gl(uo)gl(ul)+g2(uo)gz(ul)]
A/"

_ -A/E -
= AR E (1-p) ) (32)

22
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where
2
E = glz(uo) + glz(ul) + gzz(uo) + g, (uy)
and
Po = 2/E_[g,(u )g, (u)) + g,(u )g,(ug)l (32a)
Similarly,
E(2/H)} = 2B B (1-p) (33)

The variance of ¢ is

var (¢ /H,) = E{(Q—E)z}

No/2[912(uo)+glz(ul)+922(uo)+922(ul)

- 2(gl(uo)gl(ul)+g2(uo)gz(ul))]

N,/2 Eg(l-p,) (34)

From these statistics, the pdf's of ¢ given each

observation hypothesis HO and Hl are

X _ —
p(2/Hg) = (- Ly exel—tor0+ 2B B (1-p 11?1} (35)
nol 20£
p(L/H,) = (—= )% expl—2s0(a- B £ (1-p AT (36)
1 2o 2 20 2 2 lo} o
L L
where
2
o, = NO/Z Eo(l-po)
23
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For this situation, P{2>0/H0} = P{£<O/Hl} and the proba-

bility of error then becomes

P() = 1/2P{R>0/H0} + 1/2 p{2<0/ul} = P{2>0/u0}

fl; p(E/Ho)dl
-] ‘ }5 _ —

i/- ( 1 2) expl 12[(24-é%§ Eo(l-oo))zl} aL(37)
0 2H02 202

This integral can be simplified with a change of variables

by letting
(2+ AVE/2 Eo(l—oo))
X = 5
L
Therefore
ax = 22
')

Substituting back into (37) yields

L 1 -x2/2
P(c) =[ e dx (38)
x' v 2I

where
x' = AVELE /2N (1-p )%
o o o

Equation (38) can be recognized as the Q-function [Ref 6].

The probability of error is now
EE

P(e) = Q(x') = QA= (1-p 1)) (39)
(o]
24
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If symmetry in the error is assumed (i.e., u, = -u, = u)

then

.2 . 2 2 2
Eo = sin  u + sin”  u + cos  u t+ ¢cos u = 2

and from equation (32a) with U, = -u=u

po = (-sin2 u + 0052 u) = cos 2u

The variable oo is known as the correlation coefficient

[Ref 6] and its result is consistent since it must vary

between *l1. Equation (39) becomes
P(e) = QIA(E/N_(1 - cos 2u))?] (40)

Having determined the probability of error, the 22
bound can now be derived for the MSE of the radar model.
If we substitute u = ko X sin 9 and let ko Xx =1, then for

an MSE of 82(6) the lower bound is [Ref 12]
ez(u) > u2 Q[A(E/No(l-cos 2u))%]

and then

82(9) > sin2 8 Q[A(E/No(l—cos(z sin 9)))%] (41)

Two properties can be seen from equation (41).
First, for large SNR (EO/NO) the argument of the
Q-function will be large, giving a small value for Q(x).

This means a small prcbability of error and hence a

smaller MSE. This is intuitively consistent since we would

expect to track well at high SNR. As 6 increases, €2(9)

25
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increases, which tells us that the M3E becomes larger when
we are not pointing at the target. So in order to keep

the MSE small the boresite must be kept on the target.

The Cramer-Rao Bound

In reference [2], it was shown that for a one-
dimensional Amplitude-Comparison Monopulse Radar, the CR
bound for the variance of the estimated target position,

Var(g), was

1

var(g) > : , (42)
= 2
2% 2E(g 2 (u)+g.%(u))
N 1 2
o
. v 2 .2 2 * 2
For this case 9, (u) = sin® u cos” 6 and 9, (u) =
cos2 u cos2 8 sc (41) becomes
N 1l 1
var(e) > =~ = = (12a)
PX: fl—E- cos® 8 A SNR cos? ¢
o

The factor (élz(u) + ézz(u)) can be shown to be
the inverse of the beam-width [Ref 2].

The CR bound states that a narrow beam-width will
ensure a small variance. But the CR bound does not account
for the fact that when the threshold effect and breaklock
occur, the target is outside of the radar beam-width and
the variance of the error is very large. At this point
(i.e., very low SNR) a narrow beam-width no longer guar-

antees a small error variance. The bound becomes

26
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unreliable and cannot accurately lower bound the MsSE at

low SNR levels.

The Tracking Locop

To gain insight into where the breaklock point
occurs it is necessary to design a tracking loop which
uses equation (22) to steer the antenna boresite toward
the target. Figure ? shows a bklock diagram of the mono-

pulse system which will be simulated.

€ Al

Discriminator

9, (u)

[>_ gu)
>

N, Estimator

A 9l G(S)

Servo

Fig. 8. Block Diagram of AC Monopulse Radar Showing
the Estimator being used to Track a Target

In Figure 8, Sy sz, nl and n2 are the representa-

tions of the signal and noise components respectively,
where s, = A/Eg, (u) and s, = A“/Eg,(1). The observation
r, = sl-fnl and r, = s2+n2 are random numbers. For
simulation purposes they are determined by using a random

number geuerator to generate ny and n, which are then

27




added to s, and s, respectively. The antenna functions

1 2
are determined by noting that equations (10) and (l11l) can

o

be written as 1
gl(u) = cos (sin 0) (10)
g,(u) = sin (sin 0) (11) ¥

where koxo = 1 (this means that the distance between the
two point sources is small and has been chosen so that
kx, = 1). §
The target position relative to the boresite is 6,
Since this is a computer simulation, the actual target

position is inserted into the antenna functions to provide

the amplitude weighting. With this information, ry and

T

|

are calculated and fed into the estimator. The esti- j
] mator to be used is equation (23) which, restated, is :
{

~
-

E=0r sin (sin 6) - r, cos (sin 0) (23)

1 2

The error, g, is calculated using the estimated
target. position 5, and the random numbers ry and r, (which
{ are calculated using the actual target position 6). The
target position, estimated and actual, is always relative I,

to boresite. If we assume that the radar boresite is

pointing to the estimated target position 6, then for each
observation 6 = 0 and the resulting erroxr, ¢, contains

information pertaining to the actual target position.

T
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The error ¢, which now contains the target posi-
tion 6 and a noise component is fed to the discriminator.
Recall that the mran of the error ¢ is equation (22)

rewritten here as

A
sin (u - u)

]

€

]

sin (sin 6 - sin §) (43)

If a 3 dB beam-width of 3 degrees is assumed,
A6 , or the difference between boresite and the target
will be 2 maximum of * 1.5 degrees. For small values of 0,

sin 926, therefore
€ = sin (6-9) (44)

If we assume that the boresight is pointing at the esti-

mated target position, then

€ = - sin @ {45)
Equation (45) can be further reduced to

€ = -8 (46)

For the range of 9§ chosen, the actual discriminator curve
is shown in Figure 9.

Becaus~ of the assumptions made, 6 in equation
(46) is the same as A9, the distance in degrees the bore-

site must move to be pointing at the target.
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1 .0262

1.5 .

-.0262 4

Fig. é. Discriminator Curve Showing Maximum
Values of € and 6 or A6

As stated before, the error is transformed into a
corresponding A8 by use of the discriminator curve. The
error g, fed to the discriminator is random due to the
additive channel noise. The discriminator curve used
represents the error without noise; therefore, the corres-
ponding A¢ produced is also random.

The next step in the tracking loop is to input
the target position 6, or A6, into the angle servo to
steer the boresite to the target. The walue used for A6
will be constant during each observation interval; there-
fore, it can be modeled as a step input to the servo. The
amplitude of the input to the servo after the next observa-
tion will reflect the change in the radar boresite as it
movas closer to or away from the target. The input becomes

a series of step functions whose amplitudes are proportional
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: to the distance the boresite must move (in either direc~

tion, 8) to the target.

The output of the servo will be delayed due to
the inertia of the antenna and the drive motor, but it
needs to be approximately equal to its input. The servo

used should therefore provide a zero steady-stszte error

;F for a step input.

\

s(s+w)

ABin +Q K OBout ~

{

Fig. 10. Angle Servo Feedback Control Loop %
| ]

i

Assume the angle servo has a :‘eedback control loop

1 as shown in Figure 10. The transfer function is ]

~f Aeout _ K 4
| 6. - 2 (47)
in S + sw + K

Equation (47) can be factored into i

. X |
618) = ey (e (48)
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Using (48) as the servo transfer function and assuming
the input to the servo to be a step function A6 (s) = AG/s,

the servo output hecomes

. _ AOK
A8/s + G(s) = s{s+a) (s+8) (49)

which has an inverse Laplace transform of

: poK(ge @t - qe™P)
; ABK + (50)
; aB af (a-g)
; If we let 0o = -0 + ju, B = -0 - jw and K = o B, then after
'
i some manupulation, equation (50) becomes

20" (t) = 20 (1-e %% sin wt - cos wt)] (51)

The values of ¢ and w are obtained from the poles of the
transfer function. The pole positions are chosen so that
a value of ¢ will damp the servo system response such that
it will settle out without four system time constants.
This settling time will give an output within 5 percent of

the input value. The settling time is chosen to be a multi-

tude of the PRI of the radar. The PRI used for the computer
simulation is 1/200 pps or 5 ms.

Once an output A8' is obtained from the servo,
it is used to steer the radar boresite. This is simulated
by changing the antenna functions gl(u) and g2(u) tc reflect

the new target position. 1If there were no noise, the
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boresite would point directly at the target after one
pulse. Because of channel noise, however, the boresite
will point close to the target after each pulse but never
directly on it. The new (or adjusted} antenna functions
produce a new error ¢ which in turn produces a new A6.

This loop continues as the radar boresite tracks the target

E within some small error (MSE).

To begin the problem, a stationary target is
tracked and the MSE is calculated. The stationary target
is a simple case since in the routine the target position
is initialized within the 3 dB beam-width and tracking it

consists of maintaining the boresite on it.

To consider a moving target, a relationship between
the ﬁarget position, velocity, and range is needed.
Figure 11 shows the geometry of the situation. The dis-
tance the target moves in the positive x direction is
VTt, where VT is the target velocity. R0 is the range to
the target at the point of acquisition and RT is the
changing range to the target. Note that the target range
RT and the SNR are inversely proportional. The changing

SNR can be accounted for by using the radar range equa-

tion [Ref 1].

2.2 .
P. G AT o
4 R "R T (52)

SNR R™ = 3
(41)° N
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Fig. 1l. éeometry Showing the Relationship Between
Target Position, Velocity and Range

|

where R range to the target

: PR = power received

% Gp = receiver gain

: A = wavelength of carrier
8 . o, = target cross-section

N = internal receiver noise power

For the problem at hand, the right side of equa-

et AT o g -

tion (52) remains constant. If we let SNR0 and Ro be

the initial SNR and target range and SNRT and Rn be the
new SNR and target range we have
2,2
P_G AT o
SNR_ Ro4 --R 22 (53)
(4T1)° N
and
2 .2
P_ G A% o
sR, R, = BB T (54)
(4M)° N
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Therefore

4 4
SNRT RT = SNRo Ro

and
R 4

- "o '
SNR,, = SNR_ (RT) | (55)

Equation (55) can account for the changing SNR as the

target range Rn, increases for a moving target.

V_t
T
tan 8, = —
T Ro
_ -1
eT(t) = tan (th/Ro) (56)

With a relationship for eT as a function of velccity,
time, and range, the target position can be accounted for

in the computer simulation.

The Error
The tracking error for the stationary and non-
stationary case is the difference between the radar bore-

site and target position.

E, =6, -0 (57)

The simulation will take 50 observations which could con-
sist of every pulse or every'several pulses depending on
the settling time chosen for the angle servo. Each set
of 50 observations is considered a run. In each run a
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"seed" is used to generate a vector of random numbers
which are used to determine ny and n, which in turn are
used to calculate r) and r,-. A different seed is used for
each separate run and a new set‘of random data is generated.
If equation (57) is squared for each observation and then
averaged over the number of runs, an approximation of the
MSE is obtained. For an example see Figure 12. 1In
Figure l12a the value at observaticn 4 is summed over all
the runs and  then divided by the number of runs to obtain
the MSE for that observation which is plotted in Figure 12b.
If this is done for each observation, the approximate MSE
is obtained for a single SNR level. Recall that an obser-
vation can be one pulse or a multiple of pulses.

| The threshold or point of breaklock can be deter-
mined by observing when the MSE increases continually per
observation. As the SNR is decreased, the plots of the
MSE will look similar to Figure 13.

Since the beam-width is * 1.5 degree, an error e
producing a Af greater or less than * 1.5 degrees will be
automatically limited to t 1.5 degrees. The servo will then
move the boresite its maximum limit and another observa-
tion will be made. If the error developed at this obser-
vation produces a A6 again greater than the maximum,

A9 will automatically be limited again to # 1.5 degrees.
The servo will not be able to keep up with the moving

target to be able to track it. This is breaklock and can

36

rdnaca - . L mna e e — R




g2 ﬁ
Y
3
4 Pulses
A
2
ETz
. -
. 4 " Pulses
E2
Us
l >
4 Pulses
a
MSE \
= ->
4 Pulses
b

Fig. 12. (a) .ample Plots of the Error Squared per
Observation for One SNR Level; (b) Example Plot of
the MSE per Observation for One SNR Level
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MSE

-
Pulses

Fig. 13. Sketch of MSE Becoming Unbounded
at Breaklock

be caused by a number of factors. The target velocity
can be fast enough At a certain range to cause breaklock,
the servo could be too slow to "catch up" to the target,
or the SNR can degrade to a point where the threshold

effect occurs. The velocity, range, and servo will be

adjusted to prevent breaklock except at a low SNR.
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III. The Computer Program

The programs for the stationary and nonstationary
target are straightforward. The only subroutines used were
two IMSL subroutines, GGNML and MDNOR.

The program was designed so that the radar param-
eters such as PRI, servo settling time, and boresite posi-
tion can be initiated at the beginning. The initial target

position must be within * 1.5 degrees of the boresite posi-

tion.

The IMSL subroutine GGNML is called to generate a
vector of random numbers to represent the noise components
n, and n, of the observations r, and r,. A vector of 100
random numbers is generated and two numbers arc used for
each observation. The program is set up for 50 observa-
tions but can be adjusted for any amount provided the random
number vector is also adjusted. The random numbers ry and
r, are then calculated using equations (14) and (15). The
value for 6 is calculated by subtfacting the boresite posi-
tion from the target position. It is then updated as the
boresite is moved. Once an error is calculated from
equation (23), it is converted to a A8 by use of equation

(24). This A6 is used as input to the servo equation (51).

The output of equation (51) is used to move the antenna.
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This is simulated by changing gz(u) and gA(u) to reflect
the new difference between radar boresite and the target. ]

For a moving target, equation (54) is used at this point 1

to calculate the new target position. The SNR will change
as the range from the radar to the target increases. This
is accounted for in the program for the moving target. The
boresite position is updated by adding the servo output to
the old boresite position.

All of the above are accomplished for one observa-
tion. After this is done the tvracking error is calculated :
by subtracting the target position from the boresite posi-

tion. This value is squared and stored in a 50 column by

15 row array. The ZZ and CR bounds are also calculated at
this point and stored in a similar array. After 15 runs,
the columns of the array are summed and divided by the
number of rows (15) to form the mean-square error per
observation. The MSE is then plotted for 50 observations.
The entire process is then repeated for a lower SNR level. |
The SNR level was varied from 35 dB to -10 dB. ;
The target velocity used was 609.6 meters/second. The
servo settling time used was 100 milliseconds. The acquisi-

tion range was 6000 meters.

A..WW‘W.‘.—-_—.—-_W.-_ﬁ(-W‘“
o e AR e
e

To calculate the ZZ bound, the IMSL subroutine :

MDNOR was called to evaluate the Q-function used to deter-

mine the probability of error.

40

e T FONSRN e - s e e < —————— m e s e e ————y . &1 omm—tach




START

Boresite
Target Pos
PRI
Etc.

A

e e B s kbt i

.
Call GGNML
Set up R,
and l~'i2
F""-“—-‘ moving target
Account for g targ
Calculat ! only
aloulate | Changing SNR
Error {
Voltage |
| 1
P |
Obtain Servo
Outpul
Move
Antenna
'. Calculate
Calculate 1 New Targe‘ moving target
tracking | Position only
error :
Lo e et
-2

Fig. 14. Flow Diagram for Stationary/MNonstationary

Target Tracking

41




Change
Seed

E
|
i
|
i

i

Calculate 1
MSE |
Y44 i
CR

Call MDNOR 1

Change
SNR

T T ToE

- A z 4 ~ M a = '*-W"‘r*;-r e V, —— ;J




TETETIETIRR TRpTTT mrmaTTTYRT T TRy, e T meYes Y T - Ty e e rm oA - T — .o s N

IV. Results and Conclusions

General

The computer program was run for the stationary

ot i ko

and the nonstationary target with the SNR varied from

35 dB to -10 db. For each SNR level, 15 runs were made
taking 50 observations each. The MSE per observation was

computed and plotted. 1In addition to the MSE, the Cramer-

Rao and Ziv-Zakai bounds were calculated per observation
and plotted (see Appendix Band C).

The object was to determine the point of breaklock

and how the lower bounds can be used to quantify it.

Stationary Target

As the SNR level was decreased, the MSE increased.
It became increasingly difficult for the boresite to stay

on target. The MSE became unbounded between -7 dB and

=10 dB. Breaklock is assumed to have occurred here. j

Cramer-Rao Bound

As Figure 15 shows, the MSE at 7 dB is greater !
than the constant level of the CR bound. As the SNR was
decreased the CR bound became very inaccurate. 1In
Figure 16 the MSE is below the CR bound in some places.

It appears that the CR bound is the average of the actual
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3 MSE. But according to the definition of the lower bound,

the MSE must always be greater than or equal to the lower

i,
L Al

% bound. Figqure 17 shows the MSE compared to the CR bound

at -20 dB. The MSE is completely below the CR bound.

j
:
The Ziv-Zakai Bouud - ;

The 22 bound for the stationary target tends to “
follow the general trend of the MSE. Note the large magni- h
tude difference between the 22 bound and the MSE (see
Figure 18). The %Z bound is the product of the sin? 0 and
the P(g). ©Neither is ever greater than 1; therefore, the

ZzZ bound is never greater than 1. The importance of the ’

2Z bound in this case therefore is that it shows the trend

of the MSE. Note in Figure 18 that the Z2Z bound at many

points has the same peaks and valleys as the MSE. 1In
Figure 19 the MSE becomes unbounded. This trend is also ;

f shown in the 227 bound.

Moving Target--Cramer-Rao Bound

Figures 20 and 21 show the MSE as compared to the

CR bound. Breaklcck occurs below 5 dB when the MSE becomes

CIEMN A P ool AR 1Y

unbounded. The CR bound does not show any trend toward ’

breaklock even at a verv low SNR (Figure 21). The CR bound

Bazcommme

| -
) is generally constant with a slight upward trend toward the
end of the run. This is due to the SNR decreasing as the

target moves horizontally past the radar. The upward

R R

k" _ movement of the bound is not related to the actual MSE.
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As the SNR is decreased, the CR bound tells us that the
MSE is increasing but gives no indication when breaklock

occurs.

Ziv-Zakai Bound

As in the stationary case, the 72Z bound follows
the trend of the actual MSE. The ZZ bound becomes unbounded
as the MSE becomes unbounded (Figures 22 and 23).

Among other reasons, the breaklock point occurs
because of SNR level, the target range and speed, and the
angle servo response time. The exact level of SNR for
breaklock is not important here since it would depend on
the parameters of an actual (not simulated) random system.
What is importané is that if these parameters were taken
into account, the breaklock or threshold of an actual sys-
tem could be predicted by the ZZ bound.

Ziv-Zakai Bound Compared to
Cramer-Rao Bound

It is interesting to observe why the ZZ bound
follows the actual MSE closer than the CR bound. The CR

bound as stated in Chapter II is

var(d) > L, | (42)

SNR cos™ 6

The angle 6 is the difference between the bore-
site and target position on the radar beam (i.e., the
error). It is limited to * 1.5 degrees since the 3 dB
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beam-width is 3 degrees. The cosine of a very small angle
is approximately 1 so the CR bound is essentially con-
stant for each SNR level (i.e., it is not influenced

heavily by the error). On the other hand, the 22 bound is

e?(e) > sin® 6Q(A(E/N_(1-cos 2u))¥) (41)

where u = sin 8 and 6 is the target position relative to
boresite.

The probability of error is related to the SNR
level and is small for lage SNR and approaches 1 for small
SNR. The factor that allows the 22 bound to follow the
general trend of the actual MSE is sin26 or 02.

Since § is the error between the boresite and
target and is limited to % 1.5 degrees, sin26 = 62 which
can be related to the mean-square error. Hence the Z2
bound is more prone to follow the actual MSE. Because of
the tremendous magnitude difference between the ZZ bound
and MSE, the ZZ bound does not give a good indication for
a lower bound on the MSE. It could be possible, however,
to scale the 22 bound to the actual MSE and not only be
able to predict its trend but a more accurate and realistic
lower bound. More research would be required to develop a
scaling factor. .

The reason that 6 is limited to + 1.5 degrees is
because it has been assumed that there are no side lobes

to the radar or that they are being neglected. Once the
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target leaves the 3 dB beam-width it can no longer be
tracked., However, if there exists a significant level of
sidelobes, then 6 could be limited to the angle of these
sidelobes.

As a final conclusion it is necessary to observe
what information the two bounds give as to how to keep the
MSE small. In reference [2] it was concluded that the CR
bound states that the variance is small for large SNR and
narrow beam-width. It is smallest when the boresite is
kept on the target. This can be seen from equation (42).

The cosze term is 1 when 6 = 0 which means the:
boresite is on the target. The cosze decreases as 8 becomes
larger, therefore increasing the variance. The 2Z bound
has the same characteristics. The smaller 6 is the smaller
the MSE. The contribution of the probability of error is
mainly due to the SNR level.

In communication theory, the correlation coefficient,
p, is used to measure the similarities between £wo signals.
If both signals are exactly the same, p = 1 and if they are
opposite, p = -1 [Ref 11]. 1In this thesis the correlation
coefficient is used in a slightly different manner. The
correlation coefficient was determined to be p = cos 2 u
from equation (32a). The variable u is equal to sin 6 and
for a small 6, sin 626 ; therefore, p = cos 26 . The angle
§ is the target angle relativg to the boresite. When the

l. As §

il

boresite is directly on the target, 6 = 0 and p
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increases the correlation coefficient decveases. This
means that for two targets symmetrically located on the
radar beam, the resolution ability increases respectively
with the separation angle 2. For the problem presented

in this thesis there is only one target; however, there
exists the posgibility of a false target at its symmetrical
opposite. By using the correlation coefficient, the error
associated with detecting the target or its symmetrical
opposite is accounted for in the error probability in

equation (41).

Recommendations

The application of the ZZ bound to the mean-square

tracking error has proven fruitful. It is well worth recom-

mending an investigation of the two-dimensional case. Once
the probability of error is determined, and a suitable two-
dimensional iaequality of the tchebycheff type is found,
the Z2 bound .or the covariance of the tracking error can
be determined.

It is also recommended that an additional noise
source be considered in the one- or two-dimensional case.
The noise source can be a repeater jammer or chaff cloud.
As the radar is tracking the target the noise source will
expedite breaklock. The queséion of what noise power is
needed to cause breaklock and how can the ZZ-bound help in

quantifying the MSE should be addressed.
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b Further recommendations are to consider actual |

»

servo parameters for the radar system and incorporate |
random target motion to simulate evasive action. Also an
investigation of sidelobe structure for a typical mono-

E pulse radar would be an interesting addition to the track-

ing error.

L BTN
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Appendix A

The Two-Dimensional Monopulse Radar Model and the

Two-Dimensional Ziv-Zakai Bound

Introduction

An attempt was made to model the two-dimensional
(2-D) Amplitude-Comparison monopulse radar and derive a
2-D 2Z bound. The 2% bound used in this thesis was derived
for a one-dimensional (azimuth) situation. To expand che
bound to 2-D is not a simple task and, as will be shown,
its complexity increases four-fold. The 2-D radar model
is slightly more complex but not difficult.

Since it is simpler, the 2-D radar model is devel-
oped first with its resulting antenna functions. The
antenna functions derived could be the source of some of
the difficulties encountered in developing this approach.
For example, they are no longer independent of each other.
Each beam (sum and difference) in each dimension, contains
both azimuth and elevation information. This result seems
consistent with what would be expected from a two-
dimensional system. The problem could arise from using
the Gram-Schmidt orthogonalization procedure to descrilbe
the observations.

After the 2-D model is developed, the 2-D %2 »Hound
is discussed. The attempt to derive this bound was
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abandoned due to two main obstacles encountered. Recom-
mendations are also included as to what directions may be

taken to overcome the obstacles.

The Two-Dimensional Radar Model

A 2-D Amplitude-Comparison monopulse radar con-
sists of four antennas placed symmetrically in the x-z
plane. As in the one-dimensional case, the Antennas are
considered point sources in an array. Figure A-1 shows a
simple model of the 2-D case where antennas A and B are
split into a sum and difference and likewise antennas C
and D. This configuration produces one sum beam and two

difference beams.
A D +B
; 'V 2
B
A—B
2
D l Daz
c—-D
I>—L7"/ 2

C C+D

Fig. A-1l. A Model of a 2-D Monopulse Showing
Four Antennas and the Sum and
Difference Beams
The azimuth difference beam is obtained by sub-
tracting the difference of the four antennas and the ele-

vation difference beam is obtained by subtracting their

sums. The difference beams are
61
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A =A_'£_Q‘_D_
az vz V7
-~ (a+D) - (B+C)
V2
A - (A+B) - (C+D)
el /T

The sum beam is obtained by adding the antenna sums.

(A+B) + (C+D)
2

(A-1)

(A-2)

(A-3)

The sum and difference beams can be used to derive

the antenna functions. Assuming that the monopulse can be

nodeled as a 2-D array with four point sources, the

approaching plane waves can be described as (see Figure A-2)

E, = EoejKA.r
EB = EoejKB.r
E. = EoejKC-r
Ep = EoejKD-r

where EO is a constant.

KA = ko(xx+zz) KB = ko(-xx+zz)
KC = ko(—xx—zz) KD = ko(xx—zz)
62
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Fig. A-2. Coordinate Systém Showing Four
Point Sources in an Array

e R S -
e TP N .

and
¥ = X sin 6 cos ¢ + y sin 6 sin ¢ + z cos ©

i L

Performing the dot product K+'r in equations (A-4) through

it

(A-7) gives
i

EA = Eo exp[jko(x sin 6 cos ¢ + z cos 0)] (A-8) E
Ep = E, exp[jko(-x sin 60 cos ¢ + 2z cos 6)] (A-9) ;
EC = Eo exp[—jko(x sin 6 cos ¢ + z cos 0)] (A-10) E
ED = Eo exp[jko(x sin 6 cos ¢ ~ z cos 60)] (A-11) ?

If we let u = ko X sin O cos ¢ and v = ko z cos 6

and use Fualer's equation, the antenna functions can be
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obtained by substituting equations (A-8) through (A-11l)
into (A-1) through (A-3). If the magnitude of the result

is taken, the antenna functions are [Ref 8]

bey = 2vV2 E, cos u sin v (A-12)
Aaz = 2/2 E, sin u cos v (A-13)
I = 2/2 E, cos u cos v (a-14)

By normalizing these functions, the final form of the

antenna functions becomes

gl(u,v) = sin u cos v (A-15)
gz(u,v) = ¢cos u sin v (A-16)
g3(u,v) = COS U COS V (A-17)

A block diagram of the model can now be shown.
Figure A-3 shows the output of the four antennas (target
return) beirng weighted by the three antenna functions.
White gaussian channel noise is added to the weighted
target returns to form the observations rl(t), rz(t), and
r3(t). The same assumptions apply to the WGN as did in
the one-dimensional case.

In order to use the observations to obtain a
maximum likelihood estimate of the azimuth and elevation
angles, the Gram-Schmidt orthogonalization procedure is
used as before with the one-dimensional case. The vector

observations are therefore
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Fig. A-3. Block Diagram of the Two-
: Dimensional Radar Model
r, = AVE gy (u,v) + n, (A-18)
r, = A/E g,(u,v) +n, (A-19)
r, = A/E g4(u,v) + n, (A-20)

The mean and variance of these vectors are

E{r,/A,u,v} = AVE g, (u,v); Var(r;/A,u,v) = N /2 (A-21)

1]
i

E{r,/A,u,v} A/ﬁgz(u,v);Var(rz/A,u,v) N /2 (A-22)

E{r,/A,u,v} AVE g, (u,v); var(rj/a,u,v) = N_/2 (A-23)

The joint pdf is again the product of the individual pdfs.

1 3/2

plr,r,/a,u,v) = (Eﬁ_ﬁ;7§)

ex {———:£—1(r -AVE )2+(r -AVE )2+( -AVE )2]}
Przm /2t amHe 27RYEI ) TIEgTAYEG,

(A-24)
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The maximum likelihood estimate is obtained by finding

(Ref 6]
%é?p(rlrzrs/g,u,v) = 0
i%ﬁp(rir2r3/A,u,v) =0
%%?p(rlr2r3/A,u,v) =0
Let %;%(u,v) = éi = %;%(u,v)

for notational purposes.

The steps to obtain the maximum likelihood esti-
mate are the same as in the one-dimensional case. The

result for the A estimate is

~ r,.g, + r,g, + r.g
A= 1% 292 393 (A=25)

/E(gl2 + gz2 2

+ g3 )
The general error equation is
r, (g,g é + 9.9 é - g 2. - g.% )
11919292 T 939393 29 7939
+ r, (g,9 é + 9,9 é -9 26 -g 2 )
2191929, 29393 1 92 3 92
¥ To(g.9agy + 9,929, = 9129, - 9.2g.) = 0 (A-26)
3191939, 29392 193 7 92 93 :

The partial derivatives of the antenna functions are
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' Bgl _ agl
Su - sin u sin v du and — = ¢cos u cos v dv {(A~-27
u v
a,b) i
| _— = cos u cos v du and —— = -sin u sin v dv (A-28
., au v l
‘ a,b) :
’ i
{ —= = - gin u cos v du and —— =-Cco0s u sin v dv (A-29 .
; 2u Vv
} a,b)
Substituting these into equation (A-26) yields
¥
E €, = sin'a cos2 v(r, sin v + r, cos v) {
1l 1 3 i
-r, COS U COSs V (A-30)
- sin ¢ cos? TN ) i
€, = sin v cos u(r2 sin u ry cos u %
- rl CcOS U Cos Vv (A-31) j
€, and €, represent the error equations for azimuth i
and elevation. Note that both equations contain azimuth
: and elevation information.
i

] The expected values of €y and e, are !

~

El AVE cos2 v sin{u - u) (A-32)

€y = A/E cos? u sin(v - v) (A-33) i

~

With these results it can be seen that if u = u then

€ = 0 and if v = v, Ez = 0.

If ulrepresented an azimuth
bearing and v represented an elevation bearing, these two B

equations could be used separately to steer the radar in
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each dimension. However, recall that u = k0>(sin 8 cos ¢
and v = ko z cos 0. A change in u will effect v and vice
versa.

From thic point on it becomes clear that the 2-D
case is not simple and straightforward. Equations (A-32)
and (A-33) are not independent of each other. Not only
will there be a variance of €y and €, but also a covari-
ance.

The error equation for the one-dimensional case
described a two-dimensional discriminator curve (i.e.,
for an error ¢ a A6 was obtained). The error equations in
the 2-~D case describe a three~dimensional discriminator
curve. For each value of v in equation (A-32), there is
a 2-D discriminator curve which yields a Au for every €1
Likewise, in equation (A-33), for each value of u there is

a 2-D curve that yields a Av for every PE
The variables u and v represent the actual target
position, whereas G and G represent an estimate of the
target position. For computer simulation purposes, the
values of u and v are known and will therefore determine
what curve in (A-32) and (A-33) to use. The actual error,
however, will be derived from equations (A-30) and (A-31)
and the resulting €1 and €, are applied to (A-32) and
(A-33) to obtain Au and Av. The Au and Av obtained will

theoretically drive the boresite to the target. Because

of WGN, the boresite will not point directly at the target.
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Instead it will be within some variance (or covariance)
of the actual position. A new error will develop for each
observation which results in steering the boresite closer
to the target.

The input to the azimuth and elevation servo must
be in the form of A¢ and A8. To derive these values note

that

Au = k_ X sin 6 cos ¢ (A-34)
and

Av = k cos 6 (A-35)

(o]

™

If we let ko>c= kc:z-= 1 we have two equations and two
unknowns. Au and Av are known quantities obtained from

the discriminator curves. The values tnr A8 and A¢ are

]

AB = cos T (AV) (A-36)

]

av = cou: Y (Au/sin(cos L (Av))) (A-37)

Since 6 and ¢ are the Jifference between boresite and
target, 6 = A0 and ¢ = A¢d.

With this information a tracking loop can be
implemented. The tracking error in azimuth and elevation
can be computed. Recall that both error equations contain
azimuth and elevation information. It should also be noted
that the results for A6 and A¢ are dependent. Besides a
separate error for azimuth and elevation, a combined error
needs to be developed.
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This appears to be intuitively consistent with
what one would expect from a two-dimensional Amplitude-
Comparison monopulse. In FigureAA—4 the 2-D beam is pic-
tured with a target (x) shown off boresite. The antenna
functions would weight such a target return in both azimuth

and elevation.

Boresite

Fig. A-4. A Two-Dimensional Beam Showing a
Target (x) Off Boresite

In order to move the boresite quickly and most efficiently,
a combined azimuth-elevation error would be necessary.

Steps to implement a two-dimensional tracking loop
were not taken. 1In order to find the threshold of such a
system and quantify it, a 2-D 2% and CR bound is necessary.
This is the obstacle that prevented the 2-D case from being

pursued further.
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The Two-Dimensional Lower Bounds

The Cramer-Rao (CR) bound is defined as [Ref 6] j
var(u) » [—5—t ] (A-38)
2 4n
E{auz p(rlrz/A.u)},

for the one-~dimensional case. It can be shown that for

the 2-D case {[Ref 6]

e R N )

-1 ) (A-39)

Cov(u,v) > [ 3
E{§~&E plr.r r,/A,u,v)}
dudv 172737

e
[

The Ziv-Zakai (22) bound is not so easily trans-
formed into two dimensions. The one-dimensional ZZ bound §
. . i
E is stated here as [Ref 3] §
1 2 . 2 :
e"(t) > max sin“(8)P_(-0,0) (a-40) {
0<6<0 - e z
where ep is defined by j
1 i i :
L sin 9§ + sin 6
' sin 8 = max :
P 2 :
|
. j
; To develop a two-dimensional bound, the same steps 4
)
' as outlined by Ziv and Zakai must be taken [Ref 12]. &
The first obstacle to overcome in developing a

2-D bound is finding the probability of error P(e). The

P(e) as used in the ZZ bound is the error probability of
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the best procedure for deciding whether a target is at -9
or 6 when it is known that it is at ore of these positions
and each has equal possibilities [(Ref 8]. If we want to
expand the P(e) to two dimensions, four regions must be
considered.

Instead of just the case where a target is at Uy
or u,, there are now four cases shown in Figure A-5.

Instead of a binary detection problem we now have an M-ary

detection p.-L...1 where M = 4 [Ref 6;.

UZV-‘ u.‘ V1

Uy UqVo

 Fig. A-5. Decision Regions for a
Two-Dimensional Case

The four hypotheses are

ny: ry = AVE g, (uyvy) + ng (A-41.)
r, = AVE g, (uyvy) + n,
r3 = &/ gylu vy) + ng
72
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Hy: ry = A/E g, (u,vy) +n (A-42)

r, = A/E g,(u,vy) + n

r, = AVE g5 (u,v,)

f.

% Hy: ry = AYVE g, (u,v,) + n (A-43)
§

t

r, = A/E gz(uzvz) + n

ry = AVE g3(u2v2) + n,

4t Y1 < A/E gl(ulvz) + n (A-44)

r., = A/E g,(u;v,) + n

4 et et POt st e D M A o R o S, 1k M

ry = A/E g3(ulv2) + n

From detection theory, with probability of error

costs the decision region Rjjj;given as the values of rj P
for which [Ref 6:Ch. 5] i
PUH,}p(x/Ay) > PUHIP(r/H) for 3£ k  (A-45) ?

Equal probability of hypotheses is assumed so equation j
i

(A~45) becomes it
i

pr/iy) > pic/H) (A-46) i

4

where p(r/Hj) = p(rlr2r3/Hj) et?. é
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For decision region Rl we have

p(x/H,) > p(x/H,)
P(r/Hl) > P(r/H3)

P(r/Hl) > p(r/H4).

Similarly, for regions Rz, R3, and R4

Ryt p(r/Hz) > p(r/Hy)
p(r/Hz) > p(r/H3)

p(r/Hz) > pl(xr/H,)

R3: p(r/HB) > p(r/Hl)
p(r/H3) > p(r/Hz)

p(r/H3) > p(r/H4)

Ry* p(r/H4) > p(r/Hl)

‘p(r/H4) > p(r/Hz)

A\

p(r/,) > p(R/H,)

(A-47a)

(A-47b)

(A=-47c)

(A-48a)

(A-48Db)

(A-48c)

(A-49a)

(A-45Db)

(A-49c)

(A-50a)

(A-50Db)

(A-50c)

The next step is to find the likelihood ratios for

each decision region. For notational purposes, let

p(x/H,)

R:j(r) = P(r/Hl)

- 74
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zjk(r)

=

Using this notation,

Rlz zz(r) <
23(r) <

14(r) <

R3: 23(r)

\%

\"4

%4,(x)

v

£34(r)

0

0

p(r/H.)
p(r Hk)

for the four regions we have

2

R,: zz(r) >

223(r) >

224(r) >

Ry: 14(r)

242(r)

243(r)

\"4

\'

v

e T E—— 0 v A ror

As in Chapter II of this thesis, symmetry will be

assumed in the error.

The probability of error will there-

fore be the same in each decision region.

will be the sum of the P(e)'s in each region.

is shown as

Since

then

P(e) = p{Hl}Pe(Rl) + P{HZ}PC(RZ)

The total P(g)

+ P{H3}P€(R3) + P{H4}P€(R4)

P{Hj} = 1/4 and Pe(Rl) = Pe(Rz)

P(e) = Pe(Rl)

= P
€

(Ry)

P
L

€

This result

(A-51)
(R

4)

(A-52)

The statistics for the likelihood ratios for region 1 will

be determined and used to describe the F(e).
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By following the same steps outlined in Chapter Il

we get

_ AVE -
E{zz(r)/nl} = == E (1-p,) (a=53)

where

E_ = [gy2(uyvy) + 997 (upv;) + 9, 2 (ugvy)

+ g, 2(u,vy) + 9y ‘“1V1) + 95 2 (uyvy)

and
Py = éi[gl(ulvl)gl(uZVl) + gy (ay Vg, (uyvy)
o
+ g3(uyvy)gz(uyvy )l
_ _ A/E - _
E{lz(r)/Hz} = - =3 Eo(l pz) (A-54)
Var(lz(r)/Hl) = Var(zz(r)/Hz) = No/2 Eo(l-pz)(A-SS)
AlsoO
E{z3(r)/Hl} = A/_ Eg (1~ 03) (A=-56)
B(n, (r) /1y )= = 2E B (1-py) (8-57)

Var(l3(r)/H3) = Var(23(r)/H3) = NO/Z Eo(l-pB)(A-SB)

and

"\l

E{z4(r)/Hl} = —5— E, (1-p,) (A-59)

E{£4(r)/ﬂ4} = - A%E 30(1’04) (A-60)
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Var(£4(r)/Hl) = Var(24(r)/H4) = NO/ZEo(l-Fh)(A-Gl)
The P(e) is
P(22>0/H2)P{H2} + P(z3>0/H3)P{H3}
+ P(24XVH4)P{H4} (A-62)

Since P{Hz} = P{H,} = P{H4}= 1/4, equation (A-62) becomes

3

P(e) = 1/4P(22>0/H2) + 1/4P(£3>0/H3)
+ 1/4P(24>0/H4) (A-63)

Each term in equation (A-63) can be expressed as a
Q-function.

EE

P(e) = 1/4{(1-Q[A(552(1~p,)) *])
(o]

EE
%

+ (1-QIA (552 (1~p3) ) ?1)
o

BBy X
+ (1-Q[A(55=(1~0,)) *1)} (A-64)
o

Since symmetry is assumed, Py = P3 = k4 = P

EEO X
P(e) = 3/4{(1-Q[A(z2(1-p)) 1) } . (A-65)
O

Now that a probability of error has been deter-
mined the next step is to derive the 2Z bound. Ziv and
Zakai used the Tchebycheff inequality to transform their

probability of error into a form including a mean-square

77

i i B m




C R BRI S 2 s Tt LTI G AN SO LA SR e A e AL

. B T ¥ A SO RPN

I L
FRERL. T N T VAT O

error. Since this is a two-dimensional case a two-
dimensional inequality of the Tchebycheff type is needed.
Reference [7]) shows several probability inequalities of
the Tchebycheff type. A two-dimensional one called the

Berge inequality is stated as

EEA I P s
P (max{ 1 1 ' 2_2 } > ) < 2+ l-p (A-70)
°1 02 - - Az

where xl and x2 are random variables

u, = E{xi} '
0, = E{(X--u.)z}
i i
012 = E{ (xl-ul) (xzhuz)}
%12
9192
and A >0

As can be seen from the detinition of p, the lower
bound on the covariance could possibly be obtained from
this inequality; howevef, attempts to do so were unsuccess-
ful. It is recommended that the Berge inequality be
investigated further as to its possible use in determining
the 22 bound in two dimensions. A search for other two-
dimensional inequalities may prove worthwhile also.

Once a suitable ineguality is found the 2-D ZZ bound
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can be derived and the 2-1 monopulse radar model can

be simulated and its threshold quantified.

- D A A

P
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2ppendix B

Plots of Stationary Target MSE Compared to the

Cramer-Rao and Ziv-Zakai Bounds from

35 dB_to -10 dB
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Appendix C

Plots of Moving Target MSE Compared to the

Cramer-Rao and Z2iv-Zakai Bounds

from 35 dB to -10 dB . |
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Program Listing
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" PRIGRAM MAINCINPUTy SUTPUTWLISTPLOT TAPES=INPUT 4TAPEG=LIST,

1 TAPE9=PLC")
THIS PROGRAM SIMULATES A STATIONASY AND MCVIMG TARGET
BEING TRACKED BY AN AMPLITUDE-CCMPARISON MQONCPULSE 22ADAT,
CALCULATES THE MEAN-SQUARE ERAQORy THE CRAMER=PAC BOUND,
THE 2IV=-ZAKAI BCUNDes AND PLOTS THE RESUL"Se
COMMON/GRAFS/TITLEC3) oY1T(2)4Y2T(2) 9 ¥Y3T(2)4Y4T(2)
COMMONZ INOUZKIL yKOUT 4KP
DIMENSION TIME(S2) 9 TRK(S52) ¢ TR(52) yRMSEA(L1S952) ¢RMS(15,450)
DIMENSION * (100)ySNRV(1S)
REAL NPWRgMN1gM2
INTEGER PULSE
DOUBLE PRECISICN DSEED
C s« INPUT ALL PARAMETERS
DATA KINsKCUToKF/SyEe9/
DATA DEPRADIPISTHETAH/57e393e1815940 47
DATA VT 4RO/E09e69699C o/
DATA SNRV/35e930¢925e920¢9150910e¢37¢15e9309les~2e9=5e9=Tos=10e0

OO0
LI BN I

1 '20./

DATA Y1T/1CHMEAL SQUAR,IOHE ERRCR /
DATA Y3IT/1GHCRAMER-RAGy10H BOUNLD /
DATA YAT/1CHZIV-ZAKAI +10HBGUND /
REWIND 6

REWIND 9

CALL PLOTS(Coc90e99)
5 CONTINUE
WRITE«y® MCVING OR STATIONARY TARGET(1 OR 2)*
READ«yIMS
IFCIMSWLESC) GC TC %10
MRITE«,® C-R CR Z=Z BOUND (1 G- 2)"
READ+y1IB
WRITE#y® ENTER MSE(C-R) AND 2-Z BGUND SCALES®
READ*yTMyT2
WRITE#** ENTER DO LCOP ~ANGE®
READ#*9IlpI2
IFC(IB.ER.2) GG TO 2¢
Y2TC1)=Y3V7()
Y27 12)=Y37(2)
60 T0 25
20 Y2T(1))=Y4T()
Y2T(2)=Y4T(2)
25 CONTINUE
DSEED=21047C0C0CDO
HRITE(5952)
C « TOTAL OBSERVATION INTERVAL
T=100.E~3
ITX=T/5.,E=-3
C » SERVO PARAMETERS
SIG=600./TX
0M21483.7TX

NR=100 v
TRK (¢ 51)=0.
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30
35

C »

b

r“ P T g e o
A R e ,A.._u:l.‘-in- e e et ek b . e s ca el _\_—-L D | W

TRK (52)=TM/4,
TR(S51)=Ce.
IFCIB.EQal) TR(E2)=TM/4,
IFCIB.CQe2) TR(S52)=T2/4.
TIME(S51)=0.
TIME(S2)=50.+TX/6.
DO 500 IP=11,12
SNR=SNRV(IP)
SNRO=10e**(SNR/104)
SNRR=SNRQ
ROL D=RJ
SPHR=1.E-3
DO 200 J=1915
I=0
IF(INS.EQe2) GO TO 30
BRSITE=1.5
TRGT=0.
60 TO 35
BRSITE=0.
TRGT=1.
CONTINUE
THE TA=TRGT~RRSITE
CALL GBNML AMD SET UP THE OBSERVATIONS R1 AND R2
CALL GGNML(DSEEDoNRyFR)
DO 100 PULSE=1+20
PULSEC=FLOAT(PULSE]
RNEW=SQRT(RI#«2+ (VT «PULSEC*T )ar2)
IFCIMSeEQel) SKRR=(C(ROLD/RMNEW)I*x4)«SNRC
NPWR=SPWR/S \RR
S=SQGRTC(NPNFR)
I1=1 +1
N1=R(I)+*S
I=]+1
N2=R(I)=S
GD=SIN(SINC(THETAN))
GS=COS(SINC(THETAH))
THETA=THETA/DEPF AD
RI=COSC(SINC(THETA) )+ X1
R2=SINC(SINCTHETA) )+ N2
THE ESTIMATOR AND THE DISCRIMINATOR
E=R146D-R2+GS
DTHETA==E«DEPRAD
IF(DTHETA«GTeleZ) DOTHETA=1eS
IF(DTHETAWLTe~1e5) DTHETA==145
THE SERVO

SERYO=(1a~EXP(=SIG¢T)*((SIG/CMI*SIN(OM«T)I+COS(OMaT)))

DTHETP=DTHETA*SERVC

MOVE THE ANTENNA .
BRSITE=BRSITE+DTHETP

THE EQUATION 7O MCVE THE TARGET

116
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. IFCIMS.EQel) THGT=ATANCC(VT*PULSEC*T)/RO)I«DEPRAD
' C » ADJUST THETA TO REFLECT NEW PCSITION OF TARGET WITH RESPECT
C » TO THE BORESITE. -
THE TASTRGT=HR SITE
C » CALCULATE MSE
TRKER==THE" A
RMSCACJ9PULSE)=TRKE®wa2
IFCTHETA«GTe145) THETAZ1eS 1
IF( THETA.LT.“I.E, THETA:-I.S . {
THE TASTHE TA/DEFF AD ;
IF(IB.EQ.2) GO TC 40
SM=1./SNRR/CCS(THETA) #a2
GO TO 45
a0 CONTINUE
C *« CALCULATE CR AND 22 BCUNDS.
UX=SINCTHETA)
RO= COS (24 *UX)
AX=SQRT((1.=RC)/NPWR)
' Y X= AX
CALL MONORCYXsPX) , ,
PE)(=1.-PX ’ ]
SM=PEX+UX#42 :
45  RMS(JyPULSEI=SM
TIME(PULSE)=TX+PULSEC
L THE TA=THE TA+DEPRAD
b _ SNR=10+%ALSGLOCSNRR ) L
- MRITE(C5¢453) BRSITE9 TRGTyPULSECY TRKERsRMSEACJ 9PULSE)
. 100 CONTINUE @
- . 200 CONTINUE . ;
; WRITE(G453)
& DO 400 K=1450
SUM=0. : g
= DO 300 L=1,15 . i
;N SUM=SUM+RMSEA (L oK)
SUM1=SUML +BMS (L 4K)
 : 300 CONTINUE
: TRK(K)=SUM/15. ;
TROK)=SUM1/15, j
WRITE(5454) TRKCK) 4 SNReRC i

400 COMNTINUE 3
NRITE#y® ENTER TITLEC3AL10)®4ySNRV(IP) :
READ(5+55) TITLE

C » PLOT THE RESULTS 4
CALL DRAKCCETIMEGTRK9TR9Y39Y4y24045091)

500 CONTINUE
60 70 5
510 CONTINUE
WRITE#y" & » « RQUTE *PLOT?® TOQO ON=-LINE PLCTTER®
] WRI TE«y™ * » & FQUTE ®*LIST® TO PRINTER" )
CALL PLOTE(NDUM)

A\Yd
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o
1 52
g 53
54

55

56

10

13

Xz Nz X

14

(o]

30

27

33

REWIND 6

REWIND S

FORMAT(10XyA(3XyE119))

FORMATCLOX s "BRSTTEM yIXI"TRGT ™4 IX9"PULSECT ¢S X9 " TRKER™®y2Xy"MSET™)
FORMATC(LSXy "MSEE™ el LX9"SNR®912Xs"R5™)

FORMAT(10Xe3(3XsFE119))

FORMAT(3A10)

FORMAT(2A10)

sTOoP

END

SUBROUTTINE DRAWCCIXsYLloY29Y29YGgNGRAPHS yNSCALE 9 P2 INTSJOIN)
COMMON/GRAFS/TITLECI) o VITITLEC2) o Y2TITLEC2) 9 YITITLE(2) 9y YATITLE(D)
COMMON/Z/INCU/KINKOUT ¢ KPUNCH

OIMENSION XC1)4Y1C1)eY2(1)oY¥3CL)oVYA(1)+BIGCG)sSMALLC(G4YyXTITLE ()

~=-=-<~CHECK CALL PARAMETEFRS FOR EPRORS
1800890=0

IF(NGRAPHSLE«4)G0 TO 7
WRITE(KQUT10)

1800RB0J=1

IF(NSCALE LE.NGFAPHS)IGO TOQ 9
WRITE(KQUT,11)

I1BOCBOO=1

IFCJOIN «GEW =1 «AlD. JOIN oLE. 13G6C TO 14
WRITE(KOUT,13)

I1800B0O=1

==-<ERROR MESSAGES FCP CALL PARAMETERS

FORMAT(1H=910X9#+22222 *JCIN® IS CQUTSIDE ALLTWABLE SANGE CCCL#)

CONTINUE

=~~-AUTOMATIC SPECIFICATIONS

ORD=4. $ ABSC=6. $ SIZE=.25 $ LETTERS=30
NX=8$XTITLE (1)=AHPULSE"
NYL=NY2=NY3I=NY4=20

IF(IBOGBIO .NEs 1)GC TO 33

WRI TE(KOUT27)

FORMAT(1H-ySXe*ERROR IN CALL TC DRANCC =~ = NO PLOTS+//)
RETURN

-~==CENTER THE Y~-AXES
BOT TOM=(11.~-0RD-SIZE) /2.
-==<FIX ORIGIN FOR Y1
GRAPHS=NGRAPHS-1

"CALL PLOT(GRAPHS¢BUOTTOMy=3) . '
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31

32

OO0 0

80

85

90

95

100

IFCNSCALE «t£Qe C)IGD TC 34
~===CALCULATE SCALE FACTORS FQR EACH ARRAY
CALL SCALEC(X9ABSCoNPOINTSe1)
IF(NSCALE oMEe 1)6J TG A0
CALL SCALE(Y1 sORDyNPOINTS»1)
IF(NGRAPH3.£Q.1) 62 TO 234
CALL SCALEC(Y24CPDs"iPOTINTSH1)
IF(NGRAPHS.EQ.2) 62 TO 34
CALL SCALECY34OFDsNPOINTSH1)
IF(NGRAPHS.EQe3) GO TG 34
CALL SCALE(Y&4CEDsNPCINTSo1)
GO TO 34

~~==THIS SECTION ACCOMPLISHES IDENTICAL SCALING

-~==SEARCH Y1( ) AND Y2¢ ) FOR MAX AND MIN VALUES

BIG(1)=SMALL(1)=Y1(1)
BIG(2)=SMALL(2)=Y2(1)

DO B5 I=2+MNPOINTS ‘ :
IFCYL(I) 467« BIG(L) ) BIGC1)=YI(I)
IFCY2(I) .GTe BIGC2) ) BIG(R2)=Y2(D)
IFCYLCI) oLTe SMALL(1) ) SMALL(1D)=Y1(I)
IF(Y2(l) .LTe SMALL(2) ) SMALL(2)=Y2(I)
CONTINUE

XMAX=AMAX1C BIG(1)HIG(Z) )

XMINZAMINL CSMALLC(1),SPFALLC2) )
IFOCNSCALE +LTe 3)G3 TC 100

~=-=-=SEARCH Y3( ) FOR ITS MAX AND MIN VALUES
BIG(3)=SMALL(3)=Y3 (1)

D0 90 [=24+NPOINTS

IFCY3(I) .67« BIGC(3) ) BIG(3I)=Y3(I)
IFCY3C(I) oLTe SMALL(3) ) SMALL(3)=Y3(]D)
CONTINUE

IFCXMAX oLTe BIG(3) )IXMAX=RIG(JI)

IFCXMIN 6T« SMALL(3) )IXMIN=SMALL(D)
IFCNSCALE oLT. 4)GO TO 1040

-===-SEARCH Y4( ) FOR TITS MAX AND MIN VALUES
BIG(4)=SMALL(4)=Ya(1)

DO 95 I=24NPOINTS

IF(Y4CI) oG e BIGC4A) ) BIGCA)=Y4(T)
IFCY4QI) JLTe SMALL (4) ) SMALL(4)=Y4(I)
CONTINUE

IF(XMAX +LT. BIG(4) HIXMAX=BIG(4)

IFCXMAX «LTe BIG(4) )XMAX=BIG(4)

IFCXMIN «GTe SMALLC4) IXMINZSMALL(S)

====FIND THE ADJUSTED MIN AND INCREMENT PER INCH

BIGCLY=XMIN
BIG(2)=xMAX
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CALL SCALE(BIGyCPDy241)
XMIN=BIGC3)
DELTA=BIG(4)

-===PUT THE SCALINS INFORMATION INTO THE ARRAYS
GO TO (34411%91104125)9NSCALE

f 105 Y4CPCINTS+1)=XVMIN

YA(HNPOINTS+2)=DELTA

110 Y3ICNPOINTS+1)=UMIN

c
c
c
:
!
c
c
c
34
c
c
. 35
36
37
c
51
c
c
72
71
4
|

Y3(NPOINTS+2)=0DELTA

F 115 Y2C(NPOINTS+1)=XMIN

Y2(NPOINTS+Z2)=DLLTA
YIONPOINTS+1)=xMIN
YI(NPOINTS+2)=DELTA

-===IS ANY INDEPENDENT SCALING ".EEDED?
IF(NSCALE +EQe 2 <ANDe NGRAPHS «GTe 2)G0 "0 31
IFI(NSCALE «EQe 3 <«ANDse ANGRAPHS <EQe 4)6G0 10 32

A=0RD=-.1

-===DRAM AN AXIZ AND A SYMBOL FCR THAT AXIS

CALL AXIS(O0e90es7ITITLEONYLyORD9SCe s YI(NFCGINTS+1)yY1(NPGINTS+2))
IFCJUOIN.EQ.CIGE TO 35

CALL SYMBOL(~e89A4al591930a9-1)

IF(NGRAPH3.EQsl) GO TO 51

CALL AXISC-1a 40 a9 Y2TITLEyNY24CRD 9SG0 a9 Y2(NPOINTS+1)Y2(NPOINTS+2))
IFLJOINSEGLC)IGD TO 36

CALL SYMBOL(-1le49A9e1542¢950e9=1)

IF(NGRAPHS-TWe2) GO TO 51

CALL AXIS(=2490 ey YITITLEGYNY39CRD2F0e 9 YI(NPOINTS*1) oYI(NPCINTS+2)
IFCJOIN.EQa.CIGC TC 37

CALL SYMBCL(=2e49A9e¢1595990e09-1)

IFCNGRAPHS +EQe3) 60 TO 51 .

CALL AXIS(~2e9CaoYAaTITLEGINYA9CPD oS0 a9 YS(ANPCINTS+1 )y Y4(APOINTS+2))
IFCJOINEQLCIGE TO Sl .

CALL SYMBOL(=3e%9AyelS949%0ev-1)

CALL AXIS{0e:;0e ¢ XTITLEy=NXsABSCodeoX(NPOINTS*]1)+X(NPOINTS*+2))

=—~=DECIDE HCOW MANY POINTS SHOULD BE MAFKED WITH A SyMBoL
IFCJOIYN oNEFe 0)GO TCQ 72

J=0

GO TO 53

IFCJUOIN «EQe 1)6G0 TO 68

J=-1

WRI TECKOQUT,471)

FORMAT(LIH=y5X9#EVERY POINT IS MARPKED WITH A SYMROL»)

GO T0 53 :

(V2
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68 NUM=ABSCH* 25 + 1.
IFCNUM L Te 3JINUMZ=S
J=NPOINTS/NUM
' IFCJ oLTe 1)u=1
69 JJ=IABS(I)
WRITE(KQUTS70) JJ

70 FORMAT(lH=9SXeaEVERY*9eldye TH POINT IS MARKED WITH A SYMBCL®)

-==<=PLOT X VS Y]
53 CALL LINE(XsY1ehPOINTSeledel)
IF(NGRAPHS .EQ. 1)GC TO 60

o]

C ~==<PLJOT X VS Y2
56 CALL LINE(XsY24¢POINTSs19de2)
IFCNGRAPHS +EQe 2)GJ TQ 60
C  ----PLOT X VS Y3
57T CALL LINE(X9YIsNPOINTSs1leJded)
IFCNGRAPHS <EQe 3)GC TG &0
C ~==<PLOT X VS Y&
58 CALL LINE(XsY4oNPOINTSeleded)
C
C -===SEE IF A TITLE IS DESIRED
60 IFCLETTERS.EQ.0)GC TO 61
C =-===CENTER TITLE GVER GRAPH
XX=0.
CALL SYMBOLU(XX9ORD*a425ySIZEWTITLEsGesLETTERS)
Cc -=--=DRAW BOX ARCUND PLCT
RLM==(GRAPHS+1l,.)
RRM=ABSC+.1.
y RBMz==1,
. ' RTM=QRD+1.
" CALL PLOT(RLMyRBMe3)
CALL PLOT(FRMsRBMH2)
CALL PLOT(RRMyRTM42)
CALL PLOT(RLM4RTM,2)
CALL PLOT(RLMRBMH2)
C -=-==POSITION PEN FOR THE NEXT CALL DRAMWCC
61 CALL PLOT(ABSC+349=-8BO0TTOMy=-3)
RETURN
END
‘
-~
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lower bound. The Ziv-Zakai bound is a tighter bound and can be used to
lower bound the mean-square error at very low SNR levels., It also proves
useful in determining the SNR level at which the threshold effect occurs.
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